Analysis of the ENSO Cycle in the NCEP Coupled Forecast Model
نویسندگان
چکیده
Simulations from the National Centers for Environmental Prediction (NCEP) coupled model are analyzed to document and understand the behavior of the evolution of the El Niño–Southern Oscillation (ENSO) cycle. The analysis is of importance for two reasons: 1) the coupled model used in this study is also used operationally to provide model-based forecast guidance on a seasonal time scale, and therefore, an understanding of the ENSO mechanism in this particular coupled system could also lead to an understanding of possible biases in SST predictions; and 2) multiple theories for ENSO evolution have been proposed, and coupled model simulations are a useful test bed for understanding the relative importance of different ENSO mechanisms. The analyses of coupled model simulations show that during the ENSO evolution the net surface heat flux acts as a damping mechanism for the mixed-layer temperature anomalies, and positive contribution from the advection terms to the ENSO evolution is dominated by the linear advective processes. The subsurface temperature–SST feedback, referred to as thermocline feedback in some theoretical literature, is found to be the primary positive feedback, whereas the advective feedback by anomalous zonal currents and the thermocline feedback are the primary sources responsible for the ENSO phase transition in the model simulation. The basic mechanisms for the model-simulated ENSO cycle are thus, to a large extent, consistent with those highlighted in the recharge oscillator. The atmospheric anticyclone (cyclone) over the western equatorial northern Pacific accompanied by a warm (cold) phase of the ENSO, as well as the oceanic Rossby waves outside of 15°S–15°N and the equatorial higher-order baroclinic modes, all appear to play minor roles in the model ENSO cycles.
منابع مشابه
Examination of the Two Types of ENSO in the NCEP CFS Model and Its Extratropical Associations
Two types of El Niño–Southern Oscillation (ENSO) simulated by the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) model are examined. The model is found to produce both the eastern Pacific (EP) and central Pacific (CP) types of ENSO with spatial patterns and temporal evolutions similar to the observed. The simulated ENSO intensity is comparable to the observed...
متن کاملInitialization of an ENSO Forecast System Using a Parallelized Ensemble Filter
As a first step toward coupled ocean–atmosphere data assimilation, a parallelized ensemble filter is implemented in a new stochastic hybrid coupled model. The model consists of a global version of the GFDL Modular Ocean Model Version 4 (MOM4), coupled to a statistical atmosphere based on a regression of National Centers for Environmental Prediction (NCEP) reanalysis surface wind stress, heat, a...
متن کاملCorrection of Systematic Errors in Coupled GCM Forecasts
The prognostic tendency (PT) correction method is applied in an attempt to reduce systematic errors in coupled GCM seasonal forecasts. The PT method computes the systematic initial tendency error (SITE) of the coupled model and subtracts it from the discrete prognostic equations. In this study, the PT correction is applied only to the three-dimensional ocean temperature. The SITE is computed by...
متن کاملThe seasonal footprinting mechanism in CFSv2: simulation and impact on ENSO prediction
The seasonal footprinting mechanism (SFM) is thought to be a pre-cursor to the El Nino Southern Oscillation (ENSO). Fluctuations in the North Pacific Oscillation (NPO) impact the ocean via surface heat fluxes during winter, leaving a sea-surface temperature (SST) ‘‘footprint’’ in the subtropics. This footprint persists through the spring, impacting the tropical Pacific atmosphere–ocean circulat...
متن کاملCorrelative Evolutions of ENSO and the Seasonal Cycle in the Tropical Pacific Ocean
This study examines whether shifts between the correlative evolutions of ENSO and the seasonal cycle in the tropical Pacific Ocean can produce effects that are large enough to alter the evolution of the coupled atmosphere–ocean system. The approach is based on experiments with an ocean general circulation model (OGCM) of the Pacific basin, in which the seasonal and nonseasonal (interannually va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005